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The detailed analysis of the well-known relation y l z  = y, - yz has been done (yl z , y ,  and y z  are interfacial 
and surface tensions of phases 1 and 2). The analysis of equilibrium of a liquid drop at the interface with 
another liquid allowed us to prove that this relation should be modified by including in it the value y: 
which is considered as the result of all interactions at the interface and is accepted depending on y , .  The 
value y: represents the surface tension of a phase in the ternary point solid-liquid-gas, i.e. in the zone of 
interfacial nonuniformity. The modified form of the relation, called the rule of interfacial equilibrium, 
allows us to show that thermodynamic work of adhesion is equal to the cohesion energy of the interphase 
formed by phase 2. 
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INTRODUCTION 

It is evident that in considering interfacial phenomena and the adhesion of poly- 
mers’,2 it is impossible not to use the well known rule 

where we denote the surface tensions of phases as y1  and y 2  and interfacial tension 
as y12.  It is very important to  prove this relation theoretically becuase it determines 
values which are very important for understanding the thermodynamics of adhesion 
phenomena. By analyzing this problem, one has have in mind that in Ref. 3 it was 
proved that there exists quantitative similarity of two kinds of surface tension: the 
thermodynamic one, when a new surface is formed due to failure of any phase or 
interphase region, and mechanical surface tension when a new surface is formed by 
extension of any phase at low deformation, if this phase is solid or liquid. This 
similarity allows vector interpretation of the values in Eq. (1). The purpose of this 
paper is to prove Eq. (1) describing the interfacial interactions by using the usual 
methods of vector algebra. 

Unfortunately, in the question under consideration there are more than hundred- 
year-old accretions and for us there is nothing left but to clear the “Augean stables” 
of this relation. 
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100 A. E. FEINERMAN AND YU. S. LIPATOV 

EXPERIMENTAL DATA 

The problem of determination of the interfacial tension from the values of the 
surface tension of two contacting phases has a long history. For the first time the 
rule, Eq. (l), was mentioned by Quinke4 in 1870, who wrote that the usually-used 
correlation is erroneous because in mutually soluble mixtures of two components 
y I 2  = 0. Of course, one can say that in such mixtures there is no interfacial border at 
all, but Quinke was right in principle: if the values y1 and y 2  are surface tensions of 
separated non-contacting phases, the rule is not valid, because, as will be shown 
below, Eq. (1) is correct only at the point of ternary contact i.e. solid-liquid-gas. 

First attempts to prove the rule of interfacial equilibrium (we shall call it that 
because it reflects the very essence) were made in the last century.'.' Some success 
was had by Antonov.'-16 In his first work he agreed with Quinke in the respect that 
~ 1 2  could not be derived from y1 and y2, but he believed that the tension at the 
interface between the two phases is equal, or very close, to the difference in their 
surface tension. Further, Antonov stated that both phases should be mutually 
saturated. If we denote the surface tension of the saturated phase as y"', then 
according to Antonov 

Y12 =Y:"'- 
In this form, the rule was named Antonov's 

However, in later publications12-" the author was not accurate and over- 
estimated the applicability of his rule. All deviations from it established in Refs. 
19-28 were explained by him as due to experimental errors. We have to admit that 
there were some reasons for such a statement. Let us write the deviations from 
Antonov's rule in the form. 

A = Y l Z  + Y2 - Y 1  (3) 
and now compare the data of various authors for one and the same system, water- 
benzene (Table I). The scattering of the data seems to confirm Antonov's position. 
However, one has to pay attention to the cases where the deviation is large and 
positive. Corresponding literature data are given in Table 11. These data cannot be 
explained by the lack of full saturation of the two phases: at positive A the additional 

TABLE I 
Comparison of values of quantities in Eq. 3 for the 

water-benzene system 

60.0 28.2 32.6 +o.x 7 
61.8 28.4 33.6 +0.2 24 
62.3 28.2 34.1 0 29 
62.4 28.8 35.0 + 1.4 19 
62.7 28.5 34.8 +0.6 21 
63.0 28.8 34.2 0 22 
63.4 28.8 35.0 f 0 . 4  25 
72.7 29.1 35.0 -8.6 23 
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RULE O F  INTERFACIAL EQUILIBRIUM 101 

saturation will lead to the growth of y 2  and the decreases of y l ,  whereas y 1 2  stays the 
same (saturation of the order of some tens of molecular layers in the interphase is 
always realized) and A can only be increased. 

To understand the reasons for deviation we can consider the regularities of 
changes in homologous series. Table I11 presents some data for n-alkanes, a-alkyl 
benzenes and n-alkanoles. The comparison of these data allows the conclusion to be 
drawn that there exists a regularity in changing A with increasing length of hydro- 
carbon chain. Growth in A led to the conclusion that deviations were connected 
with changing molecular orientation and density of molecular packing in the inter- 
phase region."- 2 9  Simultaneously, the regularity found shows that the short- 
coming of Antonov's rule consists in that mutual saturation is supposed to be the 
only result of interfacial interaction, whereas all other types of interactions at the 
interface have no influence on the surface tension of coexisting phases. It may be 
connected with the fact that mutual saturation may only be observed at  some 

TABLE 11 
Values of quantities in Eq. 3 for some pairs water-low 

solubility liquidz9 at 20"(y, = 72.6 mN/m) 

liquid Y 2  712 A 

o-chloronapthalene 41.8 40.7 + 9.7 
CS, 31.4 48.4 + 7.0 

o-bromonapthalene 44.6 42.1 + 13.9 
tetrabromoethane 49.7 38.8 + 23.1 
diiodine methane 50.8 48.5 + 26.5 

TABLE 111 
Values of quantities in Eq. 3 for homologous series at the interface 

with water 
~ ~~ 

A ref. 'I1 Y 2  1'12 

hexane 72.8 18.4 51.1 -3.3 30 

liquid 

heptane 72.8 20.4 50.2 -2.2 30 
octane 72.8 21.8 50.9 -0.2 30 
decane 72.8 23.9 51.2 +2.3 30 
tetradecane 72.8 25.6 52.2 + 5.0 30 
ethyl benzene 71.2 27.9 33.5 -9.8 31 
propyl benzene 71.2 27.9 35.0 -8.3 31 

amyl benzene 71.2 28.5 40.6 -2.1 30 

heptyl benzene 71.2 29.5 42.4 f 0 . 7  30 
nonyl benzene 71.2 30.2 43.6 +2.6 30 
butanol 25.3 24.2 1.1 +0.7 29 
pentanol 26.7 25.0 4.4 +2.7 29 
hexanol 28.4 25.8 6.8 +4.2 29 
heptanol 28.9 26.8 7.7 + 5.6 29 

butyl benzene 71.2 28.2 35.7 -7.3 31 

hexyl benzene 71.2 29.1 41.6 -0.5 30 
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102 A. E. FEINERMAN A N D  YU.  S. LIPATOV 

distance from the interface, where other results of these interactions cannot be 
discovered. How stereotypes can be maintained is shown in the latest where 
as a measure of the value y12 the difference of the surface tension y1 and y 2  of phases 
is taken, despite the fact that the incorrectness of such an approach was shown as far 
back as by Quinke. 

THE PROOF OF INTERFACIAL EQUILIBRIUM RULE 

Now we shall try to prove the rule of interfacial equilibrium. We restrict our 
consideration to the analysis of interaction at  the perimeter of ternary contact 
(incomplete wetting). Figure 1 shows the traditional picture illustrating the Young 
equation, with the exception that the dotted line denotes the regions of interfacial 
nonuniformity and vectors are separated from the point of ternary contact (in Ref. 
[17] it was well-noted that vectors are here separated at least at a distance of the 
order of one molecular diameter). In Figure 1, the symbols y are related to vectors 
taking part in the interaction at the ternary point, taking into account the mutual 
saturation of phases: as the process of establishment of interfacial equilibrium in- 
volves at least some tens of monolayers (see, for example, Ref. [SO]) then near the 
ternary point the mutual saturation of phases is always seen to take place, if one 
measures it by static methods. 

Consider the interaction for the liquid drop on the solid surface (polymer). In this 
case, for the point 0, which is the centre of the meeting vectors, at equilibrium the 
following relationship should be valid: 

y = C y i = O  
I 

(4) 

where yi is the resultant vector of the beam. Here, and further on, all designations 
relate to the vectors in the zone of the ternary contact, if this is not specifically 
mentioned. In Cartesian coordinates, where the centre of coordinates is at point 0 

FIGURE 1 
to deformation of solid surface by vector $). 

Equilibrium of vectors a t  the point of ternary contact by wetting:O elevation of point 0 due 
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KULC WP IN  1 bKPAClAL EQUILIBRIUM I03 

and the plane xy is combined with the surface of the non-deformed solid, we have 

Cy!"'= 0 
k , i  

where k = (x, y, z>  for each i-th vector. Now we evolve Eq. (5) along the axis. For the 
x-axis we have 

This is the well-known Young equation, which is given here only for reference. For 
the z-axis: 

Cy!" = y l .  sin 6 - R, = 0 
i 

(7) 

where R, is the reaction of the elastic (inner) forces of a solid on the action of the 
vector y y )  = y,.sin 0. The absence of this closer definition was the reason for dis- 
cussions about the applicability of the Young e q ~ a t i o n . ~ j - ~ ~  At that time, Biker- 
man could not get the correct answer as to why the value yy) was not compensated. 
This question was discussed later.37.38 

For the y-axis, all of the projections of yi, at first sight, seem to be equal to zero. 
That is not true. To prove it, let us make a section by the plane under the angle cp to 
the base which passes through the x-axis (Fig. 2a). To present this section correctly 
one has to account for the small deformation of the solid caused by the vector y y '  
(see Fig. 1). 

Figure 2c presents the corresponding projection of the section on the base (the 
projection of vector R, is not shown). It is seen that at cp -0 the value y1 . cos €I -+ y1 
and RF'LO. Therefore, in the limit, the equation for the axis y is obtained: 

Here we write to stress once more that we deal with vectors coming to the 
ternary point. This equation expresses in a more precise form the rule of interfacial 
equilibrium. Following is specified: in Eq. (8) vectors are entered which converge in 
the zone of interfacial nonuniformity at  0 > 0 (spreading is excluded, as in this case 
the ternary point is absent). It is necessary to mention that in this equation the 
values y1 and y 2  are taken in the zone of interfacial nonuniformity and interaction of 
both phases: these values are not equal to the surface tensions of the noncontacting 
phases. 

To make the derivation of the Eq. (8) more convincing let us consider the variant of the 
equilibrium of a drop at the surface of another l i q ~ i d ~ ' - ~ ~  (Fig. 3). This variant is 
interesting not because it testifies to the rule of the interfacial tension but because of the 
conclusions which have been made by other investigators studying such an equi- 
librium. In Ref [29] it was concluded that at small angles, 19, i.e. at cos 0 E l(see Fig. 3) 
the Neumann equation39 for the x-axis may be written in the form: 

y1 =y,;c0sp+y;c0sLY (9) 
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RULE OF INTERFACIAL EQUlLIBRlUM 105 

If one had written the interfacial equilibrium rule as 

Y 1 =  Y l 2  + Y 2  (10) 

then at the angles a and /? nonequal to zero, Eqs. (9) and (10) are nonconsistent. 
Really, there are systems for which the angles B are sma11.21.29.43 In such cases the 
results contradict the rule even with the closer definitions, given for Eq. (8). In these 
systems, the surface tension of the floating liquid is lower than that of the support. 
To exclude this contradiction we have to account for one more forces, caused by the 
gravity which as taking part in the equilibrium. We use the approach developed by 
Lyons4' in a modified form. 

Let us consider the gravity work, W,, accomplished by the small displacement of 
the centre of gravity of the drop, h,, and leading to an increase in the surface area A 
of the base of the drop. Then the value y r )  to be found may be determined as 

y$"' = 6 W,/6A 

We shall use the model of a drop as formed by two spherical segments (convexo- 
convex lenses) with the base radius, r,  segment heights, h, and h,, and spherical radii 
R, and R,  (t,b = top, bottom). 

The centre of gravity of a uniform spherical segment may be found in a usual way: 

l l J ( U , ~ d V -  - ~ ~ z A ( z ) d z  - 4Rh- h2 
.nh2(R - h/3) - 12R - 4h h, = 

V 

In as much as segment volume remains, constant with increasing A and 6h = rGr/R, 
6R = rhr(2R - k)/Rh, we have 

6h, = -2r6r/6(R - h/3) (13) 

FIGURE 3 A drop at the liquid-liquid boundary. 
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106 A. E. FEINERMAN AND YU. S. LTPATOV 

As it is evident that 6 W, = - g [ p 2  T/dhj" + (pl - p 2 )  Vb6hf'] (pi is the density of the 
i-th phase) the value to be found is 

This equation with an accuracy of constant factor coincides with the expression for 
hydrostatic pressure.44945 We will take y$") positive if it coincides with the direction 
of y ' f ' .  It is unclear why Lyons used such a complicated expression for h,: 

(15) 
r4 

4h2(R - h/3) h, = - ( R  - h) 

Of course, it is easy to show the equivalency of Eqs. (12) and (15); however, Eq. (15) 
gives the value y$"' as the algebraic sum of three term 

Y$"'= g[ IP2h t (R2  -ht/3)f(pl  - P z ) h b ( R b - h b / 3 ) - p , r 2 / 2 1  (16) 

The calculation according to Eq. (16) increases the probability of an error. It is also 
noting that in his experiments Lyons measured directly the values r and h. 

Let us now perform the full calculation for the floating drop, using Lyons' data4' 
for the paraffin oil-water pair. This pair is interesting because it fits Antonov's rule. 
Table IV shows that there is no compensation necessary either across the x-axis or 
the z-axis (as a positive direction of the vector is taken as the direction of yy)). Table 
V shows the role of corrections accounting for the gravitation. 

Consider the correction for the x-axis. Eq. (16) shows that the correction should 
be positive. Really, the lowering of the centre of gravity of both segments in relation 
to the x-axis should increase the area of the plane A; therefore, the vector $) is 
directed as the vector y'f). That shows Lyons was wrong as to the sign of the 
correction and that there is no compensation along the x-axis. As for the absolute 
value of correction, it is high according to Lyons because he determined the drop 
radius from a photograph of the drop. At the same time Eq. (16) is based on the 
model of a convexo-convex lens for which 

R = ( r2  + h2)/2h (17) 

TABLE IV 
Vectors in the paraffin oil-water system. 

interfaces 

1 2 12 
YI YZ 0 Y,, B 

c Yi $2' - * , ( 2 )  
2 y 1 2  

measured 73.0 2 22.0 25 51.0 14 
values 

~ 

I + 12.96 - 19.94 -49.49 + 3.5 >,(XI 

),'2' +2.55 +9.30 -12.34 -0.5 -3.04 
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RULE OF INTERFACIAL EQUILIBRIUM 107 

TABLE V 
Correction for gravitation for a paraffin drop on water4’ (dimensions in mm; p 2  = 0.785, p1 = 1) 

A P  
ys 2nry/”’ 

R 

segments h r in Ref. 41 Eq. (17) in Ref. 41 Eq. (14) in Ref. 41: 

top 0.40 4.75 4.12 

bottom 0.28 8.3 5.73 
1.77 -3.7 +0.2 -1.1 -1.3 

If one substitutes the R values from Eq. (17) into Eq. (16), Eq. (14) may be obtained. 
If one calculates the R values according to Eq.(17) and substitutes them into 
Eq. (16), one can get the values given in the column 7 (AP) of Table V .  

The value AP is the difference between the weight of a drop (in mN) and the 
“pushing out” force of water acting on the bottom segment. This value is negative in 
relation to the chosen positive direction of yy). This situation was observed by 
Lyons and he found that AP = 27cryy). In this aspect, the situation becomes worse as 
y?)’ is consumed for compensation of the drop weight and the negative deviation 
from equilibrium becomes greater. This result can be easily verified and we give 
below our own experimental data. 

EXPERIMENTAL VERIFICATION 

In our experiments we have used rather large drops to avoid the correction asso- 
ciated with small weight of a drop and with decreasing pushing out force of the 
support. If the drop density is higher than that of the support, the radius of the lens 
may increase only up to some limit, after which the drop volume can be increased 
only due to increase in the volume of the bottom segment without increasing the 
radius of the lens. Based on these considerations, we have chosen the pair tetra- 
chloromethane-water which corresponds to the Antonov r ~ l e . ’ ~ . ~  1,43 All precautions 
have been taken to exclude any contamination in the vessel used for measurements. 
Our experience shows that any organic liquid may contain negligible amounts of 
surfactants, which do not affect their surface tension but which do affect the surface 
tension of water if they are shaken together. Therefore, tetrachloromethane was 
shaken repeatedly with fresh portions of water (see Fig. 4). 

The drop on the water surface was placed in a glass cuvette usually used for 
colorimetric analysis. Before every photograph was taken the purity of water and 
tetrachloromethane were checked directly in the cuvette in the following way. The 
drop of CC1, was placed in the cuvette in such a way that it touched the wall. In this 
condition the measurement of the surface tension of water was performed. After 
evaporation of the CCl, droplet, a second measurement of the water surface tension 
was done. That allowed establishment of the presence of some possible impurities in 
CCl,. Because the water surface tension in both cases was the same as for the initial 
water, one can say that the surface pressure of the CC1, monolayer is close to zero 
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chloromethane. 

Dependence of the surface tension of water on the number of shakings,n, with tetra- 

(this monolayer is present evidently in the gas state) and that the CCl, used was 
pure enough not to change the surface tension of water. 

The photographing was performed using an optical bench. Figure 5 represents a 
photograph of the tetrachloromethane drop at the water surface at 22°C having a 
weight of 0.37 g and a diameter of 13.6 mm. The estimation of the mass of the upper 
meniscus was done using the usual relations: 

R = r/sin 0, 

h = R( l  - l/tanO) 

with an accuracy 0.01 g. Surface tension was measured by the Wilhelmy method46 in 
our modification. The results of measurements and calculations are given in Table VI. 

The comparison of the data in the last two columns really shows that the compen- 
sation of the drop weight is realized by the vertical component of the surface tension 
of the substrate. The value 27tr(y'," - y y i )  again remains uncompensated and this is 
not connected with experimental error - the deviation is too large. 

After the measurements that we have performed, we have no doubts about Lyons' 
data and the methods used4' give no reasons for any doubts. However, we do not 
see (as Lyons himself) what angles are formed in the zone of the interfacial 
nonuniformity. One more confirmation of such a conclusion may be seen from the 
work of He measured contact angles of gas bubbles at a liquid-liquid inter- 
face. Strong distortions of visible contact angles due to the great difference in the 
density of gas and liquids had led the author to conclude that non only is the Dupre 
equation a special case of some "more general" equation, but that there was an 
urgent necessity to create a new theory of spreading. 
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RULE OF INTERFACIAL EQUILIBRIUM I09 

FIGURE 5 Photograph of tetracholromethane drop on the water surface; the scale refers to the dimen- 
sion in any direction and is equal to the ratio of the visible droplet diameter to the true one (13.6 mm). 

TABLE VI 
Measurements and calculations for the tetrachloromethane-water system (22"C, pz = 1.59 g/ml) 

Interfaces 

1 2 12 AP,mN 2nr$), mN 

'il GI*' v 2  u Y,, B ao"3 value ao 

72.4 28 26.4 3 46.0 28 147 10 145 10 
y''' 34.0 1.4 -21.6 

*'measurement error of angles using goniometer of microscope is 1-2"; 
*2calculated value; 
*'accuracy of calculation: ao = 100 rx Jxx where ox is mean-squared error of measured value x and 
2 is the arithmetical mean of x 

Since that time (1942), there have been many experiments on spreading; however, 
no new theory has been created, for the time being. We believe the true reason is the 
strong distortion of measured contact angles at  the liquid-liquid interface. 

Summarizing the data on gravitation corrections gives the following conclusions. 
For the vertical axis the compensation of the drop weight on the liquid support is 
performed by the value of y 1  sin 0. This effect may be explained by the long range of 
action of gravitation force and therefore, the lower distortion of visible contact 
angle. 

Along the x-axis, the hydrostatic pressure of water resists the hydrostatic pressure 
of a drop. Figure 3 shows the experimentally found lowering of the contact level of 
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110 A. E. FEINERMAN AND YU. S. LIPATOV 

the lenses (see Fig. 5 as well) in relation to the free water surface. For the paraffin 
drop on the water surface (see Table V, column 8), in accordance with the equation 

(see Ref. 45) it is sufficient to lower the water level by only 0.22 mm for compensa- 
tion. Therefore, the gravitation corrections for the liquid support do not change the 
ratio of vectors at the point of ternary contact, calculated from visible contact 
angles. This fact gets rid of contradictions following from comparison of Eqs. (9) and 
(10). For the case presented in Figure 5, vector equilibrium is established only when 
all three vectors are collinear. 

For solid supports the situation is more simple, as here there is no need to 
consider either gravitational or deformational corrections (for details see Ref. 38) 
and the only contact angle of wetting may be evaluated by the Wilhelmy 
method.44,46,48,49 This angle coincides with the visible one. 

The last question left to be solved is: what value should be corrected to fulfil Eq. 8. 
The value y I 2  should not be corrected because it appears as a result of interfacial 
interaction. Taking into account the coincidence of measured (from the meniscus 
weight) and visible contact angles on a solid and compensation of the drop weight 
by the value 271ry1 sin 6, when using the visible angle, we can believe that y1 as well is 
not changed in the zone of interfacial interaction (non-uniformity). For a liquid, 
y1 = is an agreement of nonvariancy. In such a way only yz should and maybe 
corrected. 

Then the rule of interfacial equilibrium should be written in the form: 

Y t  = Y1- 7 1 2  (20) 

where y ;  is the resultant of all types of interfacial interactions. The comparison of 
this equation with Eq. ( 3 )  allows to find the correction factor 

A y2  - y t  (21) 

CONCLUSION 

The dicussion above allows the conclusion to be drawn that the rule of interfacial 
equilibrium, Eq. (8), may be considered as proved theoretically. The analysis of the 
conditions of its realization shows that the rule should be written in the form of 
Eq. (20), 7 ;  being the resultant of all types of interfacial interactions. From that rule, 
it follows that the surface tension, YT, of the weak phase at the point of ternary 
contact is not a constant value but depends on the surface tension y 1  of the strong 
phase (yI  > 7;). The real form of dependence of y ;  = f ( y l )  is determined both by the 
value of y1 and by the features of interfacial interaction. By this we mean the wetting 
substance in the interphase zone, packing density, etc. 

The basis for such suppositions was given by us in Refs. 1 and 2 and our next 
communication will substantiate this concept in more detail. 

The rule of interfacial equilibrium may serve as evidence of the approach to the 
estimation of the thermodynamic work of adhesion, W,, developed in Refs. 1 and 2. 
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Really, if we add to the left and right parts of Eq. (20) the value y:, we shall have 

2y: = y1 + 7:  - 712 

which gives 

w:f’ = w, 
(23) 

where Wf:) is the energy of cohesion of the interphase formed by the phase 2. This 
conclusion fully meets the hypothesis of minimization of free energy at the interface 
between two phases. The proof of the rule of interfacial equilibrium may simulta- 
neously serve as the evidence in favour of the minimization hypothesis. 
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